Telegram Group & Telegram Channel
Covariance matrix adaptation evolution strategy - пример того, как делать ресёрч для людей, а не начальства

Две недели назад я говорил про базовый алгоритм из семейства Evolution Strategies. Сегодня мы посмотрим на CMA-ES - его улучшенную версию.

Область применения всё ещё та же - у нас есть пространство параметров и функция качества, которую мы хотим оптимизировать. Доступа к производным нет.

Базовый алгоритм сэмплировал нормальные шумы с фиксированной дисперсией и накладывал их на текущее значение параметров, получая новые точки, в которых оценивалась награда и с помощью которых вычислялась оценка градиента по параметрам в текущей точке.

CMA-ES двигается дальше. Он переходит от фиксированной дисперсии нормального шума к полноценной матрице ковариаций, вводя в алгоритм межпараметрное взаимодействие.

После того, как мы засэмплировали N шумов и посчитали качество итоговых точек, мы пересчитываем матрицу ковариации нормального шума таким образом, чтобы максимизировать вероятность выпадения тех шумов, которые привели к более высоким наградам.

Таким образом, мы "обучаем" направление эволюционного поиска. Автор утверждает, что это можно интерпретировать как Natural Gradient Descent - метод оптимизации второго порядка.

Второе улучшение, вводимое в алгоритм, заключается в использовании некоторого рода "моментов", называемых тут Evolution Paths. Очевидно, если мы много итераций подряд двигаем какой-то параметр в одну и ту же сторону, это значит, что нам можно начать двигаться быстрее в эту сторону.

Алгоритм математически нагруженный. Полностью разобраться в его устройстве за короткое время, в отличие от базового ES, не представляется возможным. Именно в таких обстоятельствах автор алгоритма - Nikolaus Hansen - поворачивается к человечеству лицом.

Он мог бы опубликовать свою статью на глубоко уважаемой научной конференции, получить премию и забить хер, но вместо этого предоставил людям все инструменты для того, чтобы результаты его труда можно было использовать.

У алгоритма есть читаемая статья на вики, статья-туториал, страница с практическими подсказками и ссылками на реализации алгоритма на 8 языках, в том числе живой питон-репозиторий с кучей документации и элементарными примерами использования.

Несмотря на очень сложный алгоритм, автор сделал всё, чтобы даже такая обезьяна, как я, смогла без каких-либо проблем использовать его для решения своей задачи.

Я не знаю, каким образом и почему спустя почти 30 лет после изобретения алгоритма автор продолжает всем этим заниматься. Испытываю глубочайшее уважение к такому подходу к ресёрчу, в отличие от современного "высрал и забыл".

У CMA-ES ещё к 2009-му накопился список из более чем сотни применений. Данный алгоритм и сегодня используется как один из бейзлайнов в своей области применения, хоть и не является SOTA. Учитесь, салаги.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/263
Create:
Last Update:

Covariance matrix adaptation evolution strategy - пример того, как делать ресёрч для людей, а не начальства

Две недели назад я говорил про базовый алгоритм из семейства Evolution Strategies. Сегодня мы посмотрим на CMA-ES - его улучшенную версию.

Область применения всё ещё та же - у нас есть пространство параметров и функция качества, которую мы хотим оптимизировать. Доступа к производным нет.

Базовый алгоритм сэмплировал нормальные шумы с фиксированной дисперсией и накладывал их на текущее значение параметров, получая новые точки, в которых оценивалась награда и с помощью которых вычислялась оценка градиента по параметрам в текущей точке.

CMA-ES двигается дальше. Он переходит от фиксированной дисперсии нормального шума к полноценной матрице ковариаций, вводя в алгоритм межпараметрное взаимодействие.

После того, как мы засэмплировали N шумов и посчитали качество итоговых точек, мы пересчитываем матрицу ковариации нормального шума таким образом, чтобы максимизировать вероятность выпадения тех шумов, которые привели к более высоким наградам.

Таким образом, мы "обучаем" направление эволюционного поиска. Автор утверждает, что это можно интерпретировать как Natural Gradient Descent - метод оптимизации второго порядка.

Второе улучшение, вводимое в алгоритм, заключается в использовании некоторого рода "моментов", называемых тут Evolution Paths. Очевидно, если мы много итераций подряд двигаем какой-то параметр в одну и ту же сторону, это значит, что нам можно начать двигаться быстрее в эту сторону.

Алгоритм математически нагруженный. Полностью разобраться в его устройстве за короткое время, в отличие от базового ES, не представляется возможным. Именно в таких обстоятельствах автор алгоритма - Nikolaus Hansen - поворачивается к человечеству лицом.

Он мог бы опубликовать свою статью на глубоко уважаемой научной конференции, получить премию и забить хер, но вместо этого предоставил людям все инструменты для того, чтобы результаты его труда можно было использовать.

У алгоритма есть читаемая статья на вики, статья-туториал, страница с практическими подсказками и ссылками на реализации алгоритма на 8 языках, в том числе живой питон-репозиторий с кучей документации и элементарными примерами использования.

Несмотря на очень сложный алгоритм, автор сделал всё, чтобы даже такая обезьяна, как я, смогла без каких-либо проблем использовать его для решения своей задачи.

Я не знаю, каким образом и почему спустя почти 30 лет после изобретения алгоритма автор продолжает всем этим заниматься. Испытываю глубочайшее уважение к такому подходу к ресёрчу, в отличие от современного "высрал и забыл".

У CMA-ES ещё к 2009-му накопился список из более чем сотни применений. Данный алгоритм и сегодня используется как один из бейзлайнов в своей области применения, хоть и не является SOTA. Учитесь, салаги.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/263

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

Knowledge Accumulator from hk


Telegram Knowledge Accumulator
FROM USA